Skip to main content

Auto ARIMA

Auto ARIMA, short for Automated ARIMA, is a variation of the ARIMA model that automates the selection of the order parameters (p, d, q) for the ARIMA model. It uses a stepwise algorithm to automatically determine the optimal values for these parameters based on the characteristics of the time series data.

The main advantage of Auto ARIMA is that it simplifies the process of selecting the ARIMA model order, which can be a complex and time-consuming task. Instead of manually analyzing the ACF and PACF plots and testing different combinations of orders, Auto ARIMA automates this process and provides a more efficient way of finding the best-fitting ARIMA model.

Method: POST Authorization: API Key
https://engine.raccoon-ai.io/api/v1/ml/time-series/auto-arima

Authorization

TypeKeyValue
API KeyX-Api-Keyrae_######

Request Body

SectionKeyData TypeRequiredDescription
traindatajsontrueData that use to train the model
date_colstringtrueInput features (X)
target_colstringtrueOutput targets (y)
configfreqstringfalseGap between datas/ time
test_sizefloatfalseTest size for split data
forcastforcast_forinttrueNumber of points that need to forcast

Types

{
"train": {
"data": <json>,
"dates_col": <string>,
"target_col": <string>
},
"config": {
"freq": <string>,
"test_size": <float>
},
"forcast_for": <int>
}

Sample

{
"train": {
"data": {
"dates": {
"0": "2022-11-25",
"1": "2022-12-02",
"2": "2022-12-09",
"3": "2022-12-16",
"4": "2022-12-23",
"5": "2022-12-30",
"6": "2023-01-06",
"7": "2023-01-13",
"8": "2023-01-20",
"9": "2023-01-27"
},
"marks": {
"0": 161,
"1": 123,
"2": 134,
"3": 167,
"4": 143,
"5": 156,
"6": 167,
"7": 143,
"8": 156,
"9": 167
}
},
"dates_col": "dates",
"target_col": "marks"
},
"config": {
"freq": "W",
"test_size": 0.25
},
"forcast_for": 5
}

Reponse Body

KeyData TypeDescription
successbooleanIndicate the success of the request
msgstringMessage indicators
errorstringError information, only set if success is false
resultjsonResult, only set if success is true
scorejsonr2_scores of the training and testing phases, only set if success is true
generated_tsfloatGenerated timestamp

Types

{
"success": <boolean>,
"msg": <string | null>,
"error": <string | null>,
"result": <list>,
"score": {
"rmse": <float>
},
"generated_ts": <timestamp>
}

Sample

{
"success": true,
"msg": "Model trained and predicted successfully",
"error": null,
"result": [
145.306460384454, 159.01596373700463, 165.26655276778865,
144.69950483108218, 160.2060306291415
],
"score": {
"rmse": 14.027130973766175
},
"generated_ts": 1685514898.064395
}