Auto ARIMA
Auto ARIMA, short for Automated ARIMA, is a variation of the ARIMA model that automates the selection of the order parameters (p, d, q) for the ARIMA model. It uses a stepwise algorithm to automatically determine the optimal values for these parameters based on the characteristics of the time series data.
The main advantage of Auto ARIMA is that it simplifies the process of selecting the ARIMA model order, which can be a complex and time-consuming task. Instead of manually analyzing the ACF and PACF plots and testing different combinations of orders, Auto ARIMA automates this process and provides a more efficient way of finding the best-fitting ARIMA model.
Method: POST Authorization: API Keyhttps://engine.raccoon-ai.io/api/v1/ml/time-series/auto-arima
Authorization
Type | Key | Value |
---|---|---|
API Key | X-Api-Key | rae_###### |
Request Body
Section | Key | Data Type | Required | Description |
---|---|---|---|---|
train | data | json | true | Data that use to train the model |
date_col | string | true | Input features (X) | |
target_col | string | true | Output targets (y) | |
config | freq | string | false | Gap between datas/ time |
test_size | float | false | Test size for split data | |
forcast | forcast_for | int | true | Number of points that need to forcast |
Types
{
"train": {
"data": <json>,
"dates_col": <string>,
"target_col": <string>
},
"config": {
"freq": <string>,
"test_size": <float>
},
"forcast_for": <int>
}
Sample
{
"train": {
"data": {
"dates": {
"0": "2022-11-25",
"1": "2022-12-02",
"2": "2022-12-09",
"3": "2022-12-16",
"4": "2022-12-23",
"5": "2022-12-30",
"6": "2023-01-06",
"7": "2023-01-13",
"8": "2023-01-20",
"9": "2023-01-27"
},
"marks": {
"0": 161,
"1": 123,
"2": 134,
"3": 167,
"4": 143,
"5": 156,
"6": 167,
"7": 143,
"8": 156,
"9": 167
}
},
"dates_col": "dates",
"target_col": "marks"
},
"config": {
"freq": "W",
"test_size": 0.25
},
"forcast_for": 5
}
Reponse Body
Key | Data Type | Description |
---|---|---|
success | boolean | Indicate the success of the request |
msg | string | Message indicators |
error | string | Error information, only set if success is false |
result | json | Result, only set if success is true |
score | json | r2_scores of the training and testing phases, only set if success is true |
generated_ts | float | Generated timestamp |
Types
{
"success": <boolean>,
"msg": <string | null>,
"error": <string | null>,
"result": <list>,
"score": {
"rmse": <float>
},
"generated_ts": <timestamp>
}
Sample
{
"success": true,
"msg": "Model trained and predicted successfully",
"error": null,
"result": [
145.306460384454, 159.01596373700463, 165.26655276778865,
144.69950483108218, 160.2060306291415
],
"score": {
"rmse": 14.027130973766175
},
"generated_ts": 1685514898.064395
}