Theta
The Theta model is a forecasting technique that combines a simple exponential smoothing approach with a linear trend component. It is useful for forecasting time series data that exhibits a linear trend.
The Theta model is based on the assumption that the future values of a time series can be estimated by applying exponential smoothing to the linearly detrended data. It is named after the Greek letter theta (θ), which represents the slope of the trend line.
The Theta model provides a simple and straightforward approach to forecasting time series data with a linear trend. However, it assumes that the trend remains linear over the forecasted period and may not capture more complex trend patterns. Additionally, it may not perform well for time series with irregular or nonlinear trends.
Method: POST Authorization: API Keyhttps://engine.raccoon-ai.io/api/v1/ml/time-series/theta
Authorization
Type | Key | Value |
---|---|---|
API Key | X-Api-Key | rae_###### |
Request Body
Section | Key | Data Type | Required | Description |
---|---|---|---|---|
train | data | json | true | Data that use to train the model |
date_col | string | true | Input features (X) | |
target_col | string | true | Output targets (y) | |
config | freq | string | false | Gap between datas/ time |
test_size | float | false | Test size for split data | |
forcast | forcast_for | int | true | Number of points that need to forcast |
Types
{
"train": {
"data": <json>,
"dates_col": <string>,
"target_col": <string>
},
"config": {
"freq": <string>,
"test_size": <float>
},
"forcast_for": <int>
}
Sample
{
"train": {
"data": {
"dates": {
"0": "2022-11-25",
"1": "2022-12-02",
"2": "2022-12-09",
"3": "2022-12-16",
"4": "2022-12-23",
"5": "2022-12-30",
"6": "2023-01-06",
"7": "2023-01-13",
"8": "2023-01-20",
"9": "2023-01-27"
},
"marks": {
"0": 161,
"1": 123,
"2": 134,
"3": 167,
"4": 143,
"5": 156,
"6": 167,
"7": 143,
"8": 156,
"9": 167
}
},
"dates_col": "dates",
"target_col": "marks"
},
"config": {
"freq": "W",
"test_size": 0.25
},
"forcast_for": 5
}
Reponse Body
Key | Data Type | Description |
---|---|---|
success | boolean | Indicate the success of the request |
msg | string | Message indicators |
error | string | Error information, only set if success is false |
result | json | Result, only set if success is true |
score | json | r2_scores of the training and testing phases, only set if success is true |
generated_ts | float | Generated timestamp |
Types
{
"success": <boolean>,
"msg": <string | null>,
"error": <string | null>,
"result": <list>,
"score": {
"rmse": <float>
},
"generated_ts": <timestamp>
}
Sample
{
"success": true,
"msg": "Model trained and predicted successfully",
"error": null,
"result": [
145.306460384454, 159.01596373700463, 165.26655276778865,
144.69950483108218, 160.2060306291415
],
"score": {
"rmse": 14.027130973766175
},
"generated_ts": 1685514898.064395
}